Global Cord Blood Banking Industry Report 2021

From the early 1900s through the mid-2000s, the global cord blood banking industry proliferated with cord blood banks emerging in all major healthcare markets worldwide. From 2005 to 2010, the market reached saturation and stabilized. From 2010 to 2020, the market began to aggressively consolidate, creating both threats and opportunities within the industry.

Serious threats to the industry include low rates of utilization for stored cord blood, expensive cord blood transplantation procedures, difficulty educating obstetricians about cellular therapies, and an increasing trend toward industry consolidation. Opportunities for the industry includeprice efficiencies associated with scale and consolidation, accelerated regulatory pathways for cord blood and tissue-basedcell therapies, and progress with ex vivo cellular expansion technologies.

Cord Blood Industry Trends

Within recent years, new themes have been impacting the industry, including the pairing of stem cell storage services with genetic and genomic testing services, as well as reproductive health services. Cord blood banks are diversifying into new types of stem cell storage, including umbilical cord tissue storage, placental blood and tissue, amniotic fluid and tissue, and dental pulp. Cord blood banks are also investigating means of becoming integrated therapeutic companies.With hundreds of companies offering cord blood banking services worldwide, maturation of the market means that each company is fighting harder for market share.

Growing numbers of investors are also entering the marketplace, with M&A activity accelerating in the U.S. and abroad. Holding companies are emerging as a global theme, allowing for increased operational efficiency and economy of scale. Cryoholdco has established itself as the market leader within Latin America. Created in 2015, Cryoholdco is a holding companythat controlsover a quarter of a million stem cell units (approximately 270,000). It owns a half dozen cord blood banks, as well as a dental stem cell storage company.

Globally, networks of cord blood banks have become commonplace, with Sanpower Group establishing its dominance in Asia. Although Sanpower has been quiet about its operations, it holds 4 licenses out of only 7 issued provincial-level cord blood bank licenses in China. It has reserved over 900,000 cord blood samples in China, and its reserves amount to over 1.2 million units when Cordlife reserves within Southeast Asian countries are included.  This positions Sanpower Group and its subsidiary Nanjing Cenbest as the world’s largest cord blood banking operator not only in China and Southeast Asia, but in the world.

The number of cord blood banks in Europe has dropped by more than one-third over the past ten years, from approximately 150 to under 100. The industry leaders in this market segment include FamiCord Group, who has executed a dozen M&A transactions, and Vita34, who has executed approximately a half dozen. Stemlab, the largest cord blood bank in Portugal, also executed three acquisition deals prior to being acquired by FamiCord. FamiCord is now the leading stem cell bank in Europe and one of the largest worldwide.

Cord Blood Expansion Technologies

Because cord blood utilization is largely limited to use in pediatric patients, growing investment is flowing into ex vivo cord blood expansion technologies. If successful, this technology could greatly expand the market potential for cord blood, encouraging its use within new markets, such as regenerative medicine, aging, and augmented immunity.

Key strategies being explored for this purpose include:

    • Nicotinamide-mediated (NAM) expansion
    • Notch ligand
    • SR-1
    • UM171
    • PGE2
    • Enforced fucosylation

Currently, Gamida Cell, Nohla Therapeutics, Excellthera, and Magenta Therapeutics have ex vivo cord blood expansion products proceeding through clinical trials. Growing numbers of investors have also entered the cord blood banking marketplace, led by groups such as GI Partners, ABS Capital Partners & HLM Management, KKR & Company, Bay City Capital, GTCR, LLC, and Excalibur.

Cord Blood Banking by Region

Within the United States, most of the market share is controlled by three major players: Cord Blood Registry (CBR), Cryo-Cell and ViaCord. CBR has been traded twice, once in 2015 to AMAG Pharmaceuticals for $700 million and again in 2018 to GI Partners for $530 million. Today, GI Partners has combined Cord Blood Registry and California Cryobank under the brand name Generate Life Sciences. CBR also bought NaterasEvercord Cord Blood Banking business in September 2019. In total, CBR controls over 900,000 cord blood and tissue samples, making it one of the largest cord blood banks worldwide.

In China, the government controls the industry by authorizing only one cord blood bank to operate within each province, and official government support, authorization, and permits are required. However, the Chinese government has announced that will issue new licenses for the first time, expanding from the current 7 licensed regions for cord blood banking to up to19 regions, including Beijing.

In Italy and France, it is illegal to privately store ones cord blood, which has fully eliminated the potential for a private market to exist within the region. In Ecuador, the government created he first public cord blood bank and instituted laws such that private cord blood banks cannot approach women about private cord blood banking options during the first six months of pregnancy. This created a crisis for the private banks, forcing most out of business.

Recently, Indias Central Drugs Standard Control Organization (CDSCO) restricted commercial banking of stem cells from most biological materials, including cord tissue, placenta, and dental pulp stem cells— leaving only umbilical cord blood banking as “permitted and licensed” within the country.

While market factors vary by geography, it is crucial to have a global understanding of the industry, because research advances, clinical trial findings, and technology advances do not know international boundaries. The cord blood market is global in nature and understanding dynamics within your region is not sufficient for making strategic, informed, and profitable decisions.

Highlights of the Report

This report presents the number of cord blood units stored in inventory by the largest cord blood banks worldwide and the number of cord blood units (CBUs) released by registries across the world for hematopoietic stem cell (HSC) transplantation. Although cord blood is now used to treat more than 80 different diseases, this number could substantially expand if applications related to regenerative medicine start receiving approvals in major healthcare markets worldwide.

Overall, the report provides the reader with the following details and answers the following questions:

    1. Number of cord blood units cryopreserved in public and private cord blood banks globally
    2. Number of hematopoietic stem cell transplants (HSCTs) globally using cord blood cells
    3. Utilization of cord blood cells in clinical trials for developing regenerative medicines
    4. The decline of the utilization of cord blood cells in HSC transplantations since 2005
    5. Emerging technologies to influence financial sustainability of public cord blood banks
    6. The future scope for companion products from cord blood
    7. The changing landscape of cord blood cell banking market
    8. Extension of services by cord blood banks
    9. Types of cord blood banks
    10. Economic model of public cord blood banks
    11. Cost analysis for public cord blood banks
    12. Economic model of private cord blood banks
    13. Cost analysis for private cord blood banks
    14. Profit margins for private cord blood banks
    15. Pricing for processing and storage in private banks
    16. Rate per cord blood unit in the U.S. and Europe
    17. Indications for the use of cord blood-derived HSCs for transplantations
    18. Diseases targeted by cord blood-derived MSCs in regenerative medicine
    19. Cord blood processing technologies
    20. Number of clinical trials, number of published scientific papers and NIH funding for cord blood research
    21. Transplantation data from different cord blood registries

Key questions answered in this report are:

    1. What are the strategies being considered for improving the financial stability of public cord blood banks?
    2. What are the companion products proposed to be developed from cord blood?
    3. How much is being spent for processing and storing a unit of cord blood?
    4. How much does a unit of cryopreserved cord blood unit fetch on release?
    5. Why do most public cord blood banks incur a loss?
    6. What is the net profit margin for a private cord blood bank?
    7. What are the prices for processing and storage of cord blood in private cord blood banks?
    8. What are the rates per cord blood units in the U.S. and Europe?
    9. What are the revenues from cord blood sales for major cord blood banks?
    10. Which are the different accreditation systems for cord blood banks?
    11. What are the comparative merits of the various cord blood processing technologies?
    12. What is to be done to increase the rate of utilization of cord blood cells in transplantations?
    13. Which TNC counts are preferred for transplantation?
    14. What is the number of registered clinical trials using cord blood and cord tissue?
    15. How many clinical trials are involved in studying the expansion of cord blood cells in the laboratory?
    16. How many matching and mismatching transplantations using cord blood units are performed on an annual basis?
    17. What is the share of cord blood cells used for transplantation from 2000 to 2020?
    18. What is the likelihood of finding a matching allogeneic cord blood unit by ethnicity?
    19. Which are the top ten countries for donating cord blood?
    20. What are the diseases targeted by cord blood-derived MSCs within clinical trials?
With an online readership of nearly one million viewers per year, BioInformant is a U.S. market research firm with 15 years of experience. As the first and only market research firm to specialize in the stem cell industry, BioInformant research has been cited by the Wall Street Journal, Xconomy, and Vogue Magazine. Headquartered in Washington, DC, BioInformant is strategically positioned to be near the National Institutes of Health (NIH), the U.S. FDA, the Maryland Biotech Corridor, and policy makers on Capital Hill. 

 1. REPORT OVERVIEW
 1.1 Statement of the Report
 1.2 Executive Summary
 1.3 Introduction
 1.3.1 Cord Blood: An Alternative Source for HPSCs
 1.3.2 Utilization of Cord Blood Cells in Clinical Trials
 1.3.3 The Struggle of Cord Blood Banks
 1.3.4 Emerging Technologies to Influence Financial Sustainability of Banks
 1.3.4.1 Other Opportunities to Improve Financial Stability
 1.3.4.2 Scope for Companion Products
 1.3.5 Changing Landscape of Cord Blood Cell Banking Market
 1.3.6 Extension of Services by Cord Blood Banks
 
 2. CORD BLOOD & CORD BLOOD BANKING: AN OVERVIEW
 
2.1 Cord Blood Banking (Stem Cell Banking)
 2.1.1 Public Cord Blood Banks
 2.1.1.1 Economic Model of Public Cord Blood Banks
 2.1.1.2 Cost Analysis for Public Banks
 2.1.1.3 Relationship between Costs and Release Rates
 2.1.2 Private Cord Blood Banks
 2.1.2.1 Cost Analysis for Private Cord Blood Banks
 2.1.2.2 Economic Model of Private Banks
 2.1.3 Hybrid Cord Blood Banks
 2.2 Globally Known Cord Blood Banks
 2.2.1 Comparing Cord Blood Banks
 2.2.2 Cord Blood Banks in the U.S.
 2.2.3 Proportion of Public, Private and Hybrid Banks
 2.3 Percent Share of Parents of Newborns Storing Cord Blood by Country/Region
 2.4 Pricing for Processing and Storage in Commercial Banks
 2.4.1 Rate per Cord Blood Unit in the U.S. and Europe
 2.5 Cord Blood Revenues for Major Cord Blood Banks
 
 3. CORD BLOOD BANK ACCREDITATIONS
 
3.1 American Association of Blood Banks (AABB)
 3.2 Foundation for the Accreditation of Cellular Therapy (FACT)
 3.3 FDA Registration
 3.4 FDA Biologics License Application (BLA) License
 3.5 Investigational New Drug (IND) for Cord Blood
 3.6 Human Tissue Authority (HTA)
 3.7 Therapeutic Goods Act (TGA) in Australia
 3.8 International NetCord Foundation
 3.9 AABB Accredited Cord Blood Facilities
 3.10 FACT Accreditation for Cord Blood Banks
 
 4. APPLICATIONS OF CORD BLOOD CELLS
 
4.1 Hematopoietic Stem Cell Transplantations with Cord Blood Cells
 4.2 Cord Cells in Regenerative Medicine
 
 5. CORD BLOOD PROCESSING TECHNOLOGIES
 
5.1 The Process of Separation
 5.1.1 PrepaCyte-CB
 5.1.2 Advantages of PrepaCyte-CB
 5.1.3 Treatment Outcomes with PrepaCyte-CB
 5.1.4 Hetastarch (HES)
 5.1.5 AutoXpress (AXP)
 5.1.6 SEPAX
 5.1.7 Plasma Depletion Method (MaxCell Process)
 5.1.8 Density Gradient Method
 5.2 Comparative Merits of Different Processing Methods
 5.2.1 Early Stage HSC Recovery by Technologies
 5.2.2 Mid Stage HSC (CD34+/CD133+) Recovery from Cord Blood
 5.2.3 Late Stage Recovery of HSCs from Cord Blood
 5.3 HSC (CD45+) Recovery
 5.4 Days to Neutrophil Engraftment by Technology
 5.5 Anticoagulants used in Cord Blood Processing
 5.5.1 Type of Anticoagulant and Cell Recovery Volume
 5.5.2 Percent Cell Recovery by Sample Size
 5.5.3 TNC Viability by Time Taken for Transport and Type of Anticoagulant
 5.6 Cryopreservation of Cord Blood Cells
 5.7 Bioprocessing of Umbilical Cord Tissue (UCT)
 5.8 A Proposal to Improve the Utilization Rate of Banked Cord Blood
 
 
 6. CORD BLOOD CLINICAL TRIALS, SCIENTIFIC PUBLICATIONS & NIH FUNDING
 
6.1 Cord Blood Cells for Research
 6.2 Cord Blood Cells for Clinical Trials
 6.2.1 Number of Clinical Trials involving Cord Blood Cells
 6.2.2 Number of Clinical Trials using Cord Blood Cells by Geography
 6.2.3 Number of Clinical Trials by Study Type
 6.2.4 Number of Clinical Trials by Study Phase
 6.2.5 Number of Clinical Trials by Funder Type
 6.2.6 Clinical Trials Addressing Indications in Children
 6.2.7 Select Three Clinical Trials Involving Children
 6.2.7.1 Sensorineural Hearing Loss (NCT02038972)
 6.2.7.2 Autism Spectrum (NCT02847182)
 6.2.7.3 Cerebral Palsy (NCT01147653)
 6.2.8 Clinical Trials for Neurological Diseases using Cord Blood and Cord Tissue
 6.2.9 UCB for Diabetes
 6.2.10 UCB in Cardiovascular Clinical Trials
 6.2.11 Cord Blood Cells for Auto-Immune Diseases in Clinical Trials
 6.2.12 Cord Tissue Cells for Orthopedic Disorders in Clinical Trials
 6.2.13 Cord Blood Cells for Other Indications in Clinical Trials
 6.3 Major Diseases Addressed by Cord Blood Cells in Clinical Trials
 6.4 Clinical Trials using Cord Tissue-Derived MSCs
 6.5 Ongoing Clinical Trials using Cord Tissue
 6.5.1 Cord Tissue-Based Clinical Trials by Geography
 6.5.2 Cord Tissue-Based Clinical Trials by Phase
 6.5.3 Cord Tissue-Based Clinical Trials by Sponsor Types
 6.5.4 Companies Sponsoring in Trials using Cord Tissue-Derived MSCs
 6.6 Wharton’s Jelly-Derived MSCs in Clinical Trials
 6.6.1 Wharton’s Jelly-Based Clinical Trials by Phase
 6.6.2 Companies Sponsoring Wharton’s Jelly-Based Clinical Trials
 6.7 Clinical Trials Involving Cord Blood Expansion Studies
 6.7.1 Safe and Feasible Expansion Protocols
 6.7.2 List of Clinical Trials involved in the Expansion of Cord Blood HSCs
 6.7.3 Expansion Technologies
 6.8 Scientific Publications on Cord Blood
 6.9 Scientific Publications on Cord Tissue
 6.10 Scientific Publications on Wharton’s Jelly-Derived MSCs
 6.11 Published Scientific Papers on Cord Blood Cell Expansion
 6.12 NIH Funding for Cord Blood Research
 
 7. PARENT’S AWARENESS AND ATTITUDE TOWARDS CORD BLOOD BANKING
 
7.1 Undecided Expectant Parents
 7.2 The Familiar Cord Blood Banks Known by the Expectant Parents
 7.3 Factors Influencing the Choice of a Cord Blood Bank
 
 8. CORD BLOOD: AS A TRANSPLANTATION MEDICINE
 
8.1 Comparisons of Cord Blood to other Allograft Sources
 8.1.1 Major Indications for HCTs in the U.S.
 8.1.2 Trend in Allogeneic HCT in the U.S. by Recipient Age
 8.1.3 Trends in Autologous HCT in the U.S. by Recipient Age
 8.2 HCTs by Cell Source in Adult Patients
 8.2.1 Transplants by Cell Source in Pediatric Patients
 8.3 Allogeneic HCTs by Cell Source
 8.3.1 Unrelated Donor Allogeneic HCTs in Patients  8.4 Likelihood of Finding an Unrelated Cord Blood Unit by Ethnicity
 8.4.1 Likelihood of Finding an Unrelated Cord Blood Unit for Patients  8.5 Odds of using a Baby’s Cord Blood
 8.6 Cord Blood Utilization Trends
 8.7 Number of Cord Blood Donors Worldwide
 8.7.1 Number of CBUs Stored Worldwide
 8.7.2 Cord Blood Donors by Geography
 8.7.2.1 Cord Blood Units Stored in Different Geographies
 8.7.2.2 Number of Donors by HLA Typing
 8.7.3 Searches Made by Transplant Patients for Donors/CBUs
 8.7.4 Types of CBU Shipments (Single/Double/Multi)
 8.7.5 TNC Count of CBUs Shipped for Children and Adult Patients
 8.7.6 Shipment of Multiple CBUs
 8.7.7 Percent Supply of CBUs for National and International Patients
 8.7.8 Decreasing Number of CBU Utilization
 8.8 Top Ten Countries in Cord Blood Donation
 8.8.1 HLA Typed CBUs by Continent
 8.8.2 Percentage TNC of Banked CBUs
 8.8.3 Total Number of CBUs, HLA-Typed Units by Country
 8.9 Cord Blood Export/Import by the E.U. Member States
 8.9.1 Number of Donors and CBUs in Europe
 8.9.2 Number of Exports/Imports of CBUs in E.U.
 8.10 Global Exchange of Cord Blood Units
 
 9. CORD BLOOD CELLS AS THERAPEUTIC CELL PRODUCTS IN CELL THERAPY
 
9.1 MSCs from Cord Blood and Cord Tissue
 9.1.1 Potential Neurological Applications of Cord Blood-Derived Cells
 9.1.2 Cord Tissue-Derived MSCs for Therapeutic use
 9.1.2.1 Indications Targeted by UCT-MSCs in Clinical Trials
 9.2 Current Consumption of Cord Blood Units by Clinical Trials
 9.3 Select Cord Blood Stem Cell Treatments in Clinical Trials
 9.3.1 Acquired Hearing Loss (NCT02038972)
 9.3.2 Autism (NCT02847182)
 9.3.3 Cerebral Palsy (NCT03087110)
 9.3.4 Hypoplastic Left Heart Syndrome (NCT01856049)
 9.3.5 Type 1 Diabetes (NCT00989547)
 9.3.6 Psoriasis (NCT03765957)
 9.3.7 Parkinson’s Disease (NCT03550183)
 9.3.8 Signs of Aging (NCT04174898)
 9.3.9 Stroke (NCT02433509)
 9.3.10 Traumatic Brain Injury (NCT01451528)
 
 10. MARKET ANALYSIS
 
10.1 Public vs. Private Cord Blood Banking Market
 10.2 Cord Blood Banking Market by Indication
 
 11. PROFILES OF SELECT CORD BLOOD BANKS AND COMPANIES
 
11.1 AllCells
 11.1.1 Whole Blood
 11.1.2 Leukopak
 11.1.3 Mobilized Leukopak
 11.1.4 Bone Marrow
 11.1.5 Cord Blood
 11.2 AlphaCord LLC
 11.2.1 NextGen Collection System
 11.3 Americord Registry, Inc.
 11.3.1 Cord Blood 2.0
 11.3.2 Cord Tissue
 11.3.3 Placental Tissue 2.0
 11.4 Be The Match
 11.4.1 Hub of Transplant Network
 11.4.2 Partners of Be The Match
 11.4.3 Allogeneic Cell Sources in Be The Match Registry
 11.4.4 Likelihood of a Matched Donor on Be The Match by Ethnic Background
 11.5 Biocell Center Corporation
 11.5.1 Chorionic villi after Delivery
 11.5.2 Amniotic Fluid and Chorionic Villi during Pregnancy
 11.6 BioEden Group, Inc.
 11.6.1 Differences between Tooth Cells and Umbilical Cord Cells
 11.7 Biovault Family
 11.7.1 Personalized Cord Blood Processing
 11.8 Cell Care
 11.9 Cells4Life Group, LLP
 11.9.1 Cells4Life’s pricing
 11.9.2 TotiCyte Technology
 11.9.3 Cord Blood Releases
 11.10 Cell-Save
 11.11 Center for International Blood and Marrow Transplant Research (CIBMTR)
 11.11.1 Global Collaboration
 11.11.2 Scientific Working Committees
 11.11.3 Medicare Clinical Trials and Studies
 11.11.4 Cellular Therapy
 11.12 Crio-Cell International, Inc.
 11.12.1 Advanced Collection Kit
 11.12.2 Prepacyte-CB
 11.12.3 Crio-Cell International’s Pricing
 11.12.4 Revenue for Crio-Cell International
 11.13 Cord Blood Center Group
 11.13.1 Cord Blood Units Released
 11.14 Cordlife Group, Ltd.
 11.14.1 Cordlife’s Cord Blood Release Track Record
 11.15 Core23 Biobank
 11.16 Cord Blood Registry (CBR)
 11.17 CordVida
 11.18 Crioestaminal
 11.18.1 Cord Blood Transplantation in Portugal
 11.19 Cryo-Cell International, Inc.
 11.19.1 Processing Method
 11.19.2 Financial Results of the Company
 11.20 CryoHoldco
 11.21 Cryoviva Biotech Pvt. Ltd
 11.22 European Society for Blood and Bone Marrow Transplantation (EBMT)
 11.22.1 EBMT Transplant Activity
 11.23 FamiCord Group
 11.24 GeneCell International
 11.25 Global Cord Blood Corporation
 11.25.1 The Company’s Business
 11.26 HealthBaby Hong Kong
 11.26.1 BioArchive System Service Plan
 11.26.2 MVE Liquid Nitrogen System
 11.27 HEMAFUND
 11.28 Insception Lifebank
 11.29 LifebankUSA
 11.29.1 Placental Banking
 11.30 LifeCell International Pvt. Ltd.
 11.31 MiracleCord, Inc.
 11.32 Maze Cord Blood Laboratories
 11.33 New England Cord Blood Bank, Inc.
 11.34 New York Cord Blood Center (NYBC)
 11.34.1 Products
 11.34.2 Laboratory Services
 11.35 PacifiCord
 11.35.1 FDA-Approved Sterile Collection Bags
 11.35.2 AXP Processing System
 11.35.3 BioArchive System
 11.36 ReeLabs Pvt. Ltd.
 11.37 Smart Cells International, Ltd.
 11.38 Stem Cell Cryobank
 11.39 StemCyte, Inc.
 11.39.1 StemCyte Sponsored Clinical Trials
 11.39.1.1 Spinal Cord Injury Phase II
 11.39.1.2 Other Trials
 11.40 Transcell Biolife
 11.40.1 ScellCare
 11.40.2 ToothScell
 11.41 ViaCord
 11.42 Vita 34 AG
 11.43 World Marrow Donor Association (WMDA)
 11.43.1 Search & Match Service
 11.44 Worldwide Network for Blood & Marrow Transplantation (WBMT)


List Of Tables

 Table 2.1: An Overview of Public Cord Blood Banks
 Table 2.2: International Prices of Cord Blood Unit
 Table 2.3: Prices of Cord Blood Units in NMDP Banks in the U.S.
 Table 2.4: An Overview of Private Cord Blood Banks
 Table 2.5: Profit Margins of Select Private Cord Blood Banks, 2016-2019
 Table 2.6: An Overview of Hybrid Cord Blood Banks
 Table 2.7: A Partial List of Global Private Cord Blood Banks
 Table 2.8: Comparison of Three Private Banks
 Table 2.9: Partial List of Public, Private and Hybrid Cord Blood Banks in the U.S.
 Table 2.10: Pricing for Storage in Commercial Banks
 Table 2.11: Rate per Cord Blood Unit in the U.S. & Europe
 Table 2.12: Cord Blood Revenues for the Four Major Companies, 2016-2019
 Table 3.1: AABB Accredited Cord Blood Facilities
 Table 3.2: Select FACT Accredited Cord Blood Facilities
 Table 4.1: Indications for the Use of UCB-Derived Stem Cells for Transplantation
 Table 4.2: Indications for the Use of UCB-Derived Stem Cells for Regenerative Medicine
 Table 5.1: Advantages of PrepaCyte-CB
 Table 5.2: Treatment Outcomes with PrepaCyte-CB
 Table 6.1: U.S. Cord Blood Banks Supplying Cord Blood for Research
 Table 6.2: Number of Cord Blood Clinical Trials by Geography
 Table 6.3: Number of Cord Blood Clinical Trials by Study Type
 Table 6.4: Number of Cord Blood Clinical Trials by Study Phase
 Table 6.5: Number of Cord Blood Clinical Trials by Funder Type
 Table 6.6: Percent Share of Indications in Children tested in Clinical Trials
 Table 6.7: Select Three Clinical Trials involving Children
 Table 6.8: Ongoing Clinical Trials using UCB for Neurological Diseases
 Table 6.9: Ongoing Clinical Trials using UCB for Diabetes
 Table 6.10: Ongoing Clinical Trials using UCB for Cardiovascular Trials
 Table 6.11: Ongoing Clinical Trials using UCB for Auto-Immune Diseases
 Table 6.12: Ongoing Clinical Trials using UCB for Orthopedic Disorders
 Table 6.13: Ongoing Clinical Trials using UCB for Other Indications
 Table 6.14: Select Clinical Trials using MSCs from Cord Tissue
 Table 6.15: Number of Cord Tissue-Based Clinical Trials by Geography
 Table 6.16: Number of Cord Tissue-Based Clinical Trials by Study Phase
 Table 6.17: Number of Cord Tissue-Based Clinical Trials by Funder Type
 Table 6.18: Select Cord Tissue-Based Clinical Trials by Commercial Entities, 2020
 Table 6.19: Wharton’s Jelly-Based Clinical Trials by Phase, 2020
 Table 6.20: Wharton’s Jelly-Based Clinical Trials by Commercial Entities
 Table 6.21: Clinical Trials in Cord Blood-Derived Cell Expansion by Country, 2020
 Table 6.22: Clinical Trials of Cell Expansion Studies by Stages in Development, 2020
 Table 6.23: List of Clinical Trials involved in the Expansion of Cord Blood HSCs
 Table 6.24: Cord Blood Expansion Approaches
 Table 6.25: Select NIH Funding for Umbilical Cord Blood Research, 2019-2020
 Table 8.1: Comparisons of Cord Blood to other Allograft Sources in Transplantation
 Table 8.2: Number of HCTs Performed in the U.S. as reported to CIBMTR by Disease
 Table 8.3: Total Number of Cord Blood Donors and Cord Blood Units by Country
 Table 8.4: Number of Donors and CBUs by E.U. Country
 Table 8.5: Number of Exports/Imports of CBUs in the E.U.
 Table 9.1: Select 15 Clinical Trials Using Cord Blood-Derived MSCs as Interventions
 Table 9.2: Select Clinical Trials using UCT-MSCs as Interventions
 Table 10.1: Global Cord Blood Banking Market Revenue by Geography
 Table 11.1: AlphaCord’s pricing
 Table 11.2: Cell Care’s pricing for Processing and Storage
 Table 11.3: Cells4Life’s pricing for Cord Blood, Cord Tissue, Amnion and Placental Cells
 Table 11.4: Cord Blood and Cord Tissue Products Released from Cells4Life
 Table 11.5: Distribution of Transplant Patients by Graft Source Registered with CIBMTR
 Table 11.6: Distribution of Transplant Patients by Indication Registered with CIBMTR
 Table 11.7: Cryo-Cell International’s Pricing for Processing and Storage
 Table 11.8: Cryo-Cell International’s Revenues, 2016-2019
 Table 11.9: Cord Blood Units Released from Cord Blood Center Group
 Table 11.10: Cordlife’s Cord Blood Release Track Record
 Table 11.11: Core23 Biobank’s Processing and Storage Fees
 Table 11.12: Allogeneic and Autologous Transplantations by Indication Reported in EBMT
 Table 11.13: GeneCell Internationals Prepaid Storage Plans
 Table 11.14: Selected Financial Data for Global Cord Blood Corporation (GCBC), 2015-2019
 Table 11.15: Insception Lifebank’s Pricing
 Table 11.16: LifeCell International’s pricing
 Table 11.17: MiracleCord’s Cost Comparison with Competitors
 Table 11.18: Maze Cord Blood Laboratory’s Payment Plans
 Table 11.19: Comparison of Pricing of NECBB with others
 Table 11.20 Stem Cell Cryobank’s Pricing for Processing and Storage


List Of Figures

 Figure 2.1: Profit Margins of Select Private Cord Blood Banks
 Figure 2.2: Cord Blood Banks by Size of Inventory
 Figure 2.3: Proportion of Public, Private and Hybrid Banks
 Figure 2.4: Percent Share of Parents of Newborns Storing Cord Blood by Country/Region
 Figure 2.5: Cord Blood Revenues for Companies
 Figure 3.1: Percent Share of AABB Accredited Cord Blood Facilities by Country
 Figure 5.1: Separation of Buffy Layer
 Figure 5.2: PrepaCyte-CB
 Figure 5.3: Hetastarch (HES)
 Figure 5.4: AutoXpress II
 Figure 5.5: SEPAX 2
 Figure 5.6: Plasma Depletion (PD) Method (MaxCell Process)
 Figure 5.7: Density Gradient Separation of Cord Blood
 Figure 5.8: Early Stage HSC Recovery from Cord Blood by Technologies
 Figure 5.9: Mid Stage HSC (CD34+/CD133+) Recovery from Cord Blood by Technologies
 Figure 5.10: Late Stage HSC Recovery from Cord Blood by Technologies
 Figure 5.11: HSC (CD45+) Recovery Post Process from Whole Blood by Technologies
 Figure 5.12: Days to Neutrophil Engraftment by Technology
 Figure 5.13: Difference in TNC Recovery among Anticoagulants
 Figure 5.14: Type of Anticoagulant and Cell Recovery Volume
 Figure 5.15: Percent Cell Recovery by Sample Size
 Figure 5.16: TNC Viability by Time Taken for Transport
 Figure 5.17: Difference in Recovery of Viable TNC after Thawing
 Figure 5.18: CD34+ Cell Count, CFU and Cell Apoptosis by Cryoprotectants
 Figure 5.19: The Number of Stored and Transplanted CB Units in Korea-CORD by TNC
 Figure 5.20: Number of Stored and Shipped CB Units and Utilization Rate by TNC Count
 Figure 6.1: Number of Clinical Trials as Reported in PubMed.gov from 2000 to 2019
 Figure 6.2: Number of Cord Blood Clinical Trials by Geography
 Figure 6.3: Number of Cord Blood Clinical Trials by Study Type
 Figure 6.4: Number of Cord Blood Clinical Trials by Study Phase
 Figure 6.5: Number of Cord Blood Clinical Trials by Funder Type
 Figure 6.6: Percent Share of Indications in Children tested in Clinical Trials
 Figure 6.7: Percent Share of Diseases in Ongoing Clinical Trials using Cord Blood Cells
 Figure 6.8: Percent Share of Diseases in Clinical Trials using MSCs from Cord Tissue
 Figure 6.9: Number of Cord Tissue-Based Clinical Trials by Geography
 Figure 6.10: Cord Tissue-Based Clinical Trials by Study Phase
 Figure 6.11: Cord Tissue-Based Clinical Trials by Funder Type
 Figure 6.12: Wharton’s Jelly-Based Clinical Trials by Study Phase
 Figure 6.13: Number of Published Scientific Papers on UCB, 2000-2020
 Figure 6.14: Number of Published Scientific Papers on Cord Tissue, 2000-2020
 Figure 6.15: Number of Published Scientific Papers on Wharton’s Jelly, 2000-2020
 Figure 6.16: Number of Published Scientific Papers on Cord Blood Expansion
 Figure 7.1: Percent Expectant Parents who have heard about Cord Blood Banking
 Figure 7.2: Undecided Expectant Parents about Cord Blood Banking
 Figure 7.3: The Familiar Cord Blood Banks Known by the Expectant Parents
 Figure 7.4: Factors Influencing the Choice of a Cord Blood Bank
 Figure 8.1: Distribution of Cell Sources in HCTs as Reported in Be The Match, 2019
 Figure 8.2: Comparisons of Cord Blood to other Allograft Sources
 Figure 8.3: Major Indications for HTC in the U.S., 2019
 Figure 8.4: Trend in Allogeneic HCT in the U.S. by Recipient Age, 2000-2018
 Figure 8.5: Trends in Autologous HCT in the U.S. by Recipient Age, 2000-2018
 Figure 8.6: Transplants by Cell Source in Adult Patients, 2010-2019
 Figure 8.7: Transplants by Cell Source in Pediatric Patients  Figure 8.8: Allogeneic HCTs by Cell Source Facilitated by NMDP/Be The Match
 Figure 8.9: Unrelated Donor Allogeneic HCTs in Patients  Figure 8.10: Likelihood of Finding an Unrelated Cord Blood Unit by Ethnicity
 Figure 8.11: Likelihood of Finding an Unrelated Cord Blood Unit for Patients  Figure 8.12: Cumulative Probability of having a Stem Cell Transplant by Age
 Figure 8.13: Cord Blood Utilization Trends
 Figure 8.14: Number of UCB Donors Worldwide as Reported by WMDA
 Figure 8.15: Number of CBUs Worldwide as Reported by WMDA
 Figure 8.16: Number of Umbilical Cord Blood Donors by Geography
 Figure 8.17: Number of Cord Blood Units Stored by Geography
 Figure 8.18: Percent Shares of all Registered Donors by HLA Typing Level
 Figure 8.19: Number of Searches Initiated by National Patients for Donors/CBU/Both
 Figure 8.20: Types of CBU Shipments
 Figure 8.21: TNC Count of CBUs Provided for Children and Adult Patients - Single
 Figure 8.22: TNC Count of CBUs Provided for Children and Adult Patients - Multi
 Figure 8.23: Percentage of HPC Products Provided for National and International Patients
 Figure 8.25: Top Ten Countries with Number of Donors Listed per 10,000 Inhabitants
 Figure 8.26: Percentage of HLA Typed CBUs Banked per Continent
 Figure 8.27: Percentage TNC of Banked CBUs
 Figure 8.28: Number of Donors per 10,000 Inhabitants by Select E.U. Countries
 Figure 8.29: Global CBU Shipments by Geography Today
 Figure 8.30: Global Shipments of CBUs by Geography (Historical Data)
 Figure 9.1: Percent Shares of Indications Targeted by UCB-MSCs in Clinical Trials
 Figure 9.2: Percent Share of Clinical Indications using UCT-MSCs
 Figure 9.3: Number of UCB Units Released by Cord Blood Registry by Application
 Figure 10.1: Global Cord Blood Banking Market Revenue by Geography
 Figure 10.2: Percent Share of Global Cord Blood Banking Market Revenue by Geography
 Figure 10.3: Percent Share of Global Cord Blood Banking Market, Public vs. Private
 Figure 10.4: Percent Share of Cord Blood Banking Market by Indication
 Figure 11.1: Growth of CBUs on the Be The Match Registry
 Figure 11.2: Growth of CBUs on the Be The Match Registry
 Figure 11.3: Number of Unrelated Donor Transplants Facilitated by NMDP/Be The Match
 Figure 11.4: Diversity of CBUs in Be The Match Registry
 Figure 11.5: Cell Sources for Allogeneic HCT Facilitated by Be The Match Registry
 Figure 11.6: Likelihood of a Matched Donor on Be The Match Registry by Ethnicity
 Figure 11.7: Percent Recovery of Viable Cells by TotiCyte Technology
 Figure 11.8: Growth in Number of New Transplant Patients Registered with the CIBMTR
 Figure 11.9: New Patients per Year Registered with CIBMTR
 Figure 11.10: Transplant Patients by Graft Source Registered with CIBMTR
 Figure 11.11: Crio-Cell International’s Revenues, 2016-2019
 Figure 11.12: Number of Cord Blood Units Stored in CBR and its Competitors
 Figure 11.13: Key Figures of Sales Revenues and Gross Profits for Cordlife, 2014-2019
 Figure 11.14: Revenue and Gross Profit for GCBC, 2015-2019
 Figure 11.15: Percent Share of Units Released by Indication
 Figure 11.16: Key Figures of Sales Revenues and Gross Profits for Vita 34, 2014-2019


Global Hematology Flow Cytometry Database

2024 Global Hematology and Flow Cytometry Database: US, Europe, Japan--Analyzers and Reagents, Supplier Shares, Test Volume and Sales Segment Forecasts This database from provides the 2023 supplier shares, the 2023-2028

USD 14500 View Report

Global Hematology Market Shares Competitive Analysis

2023 Global Hematology Market Shares in the US, Europe, and Japan--Competitive Analysis of Leading and Emerging Market Players This new report provides hematology market shares for France, Germany, Italy, Japan,

USD 1450 View Report

Global Cordless Power Tools Market 2023

The global cordless power tools market is expected to reach $29.8 billion by 2029, growing at a CAGR of 7.8% from $17.6 billion in 2022. These portable tools, powered by

USD 3350 View Report

Global Cordless Glue Gun Market Research Report 2021-2025

In the context of China-US trade war and global economic volatility and uncertainty, it will have a big influence on this market. Cordless Glue Gun Report by Material, Application, and

USD 3200 View Report

Fill The Form For Sample Request

Note : * Kindly provide us with your company id and get the sample reports at the earliest.

There is no Reviews available